

Linking Atmospheric Mercury Deposition to Human and Wildlife Exposure (Source to Receptor) by Coupling VELMA and WASP to BASS to Simulate Fish Tissue Concentrations

Christopher D. Knightes,¹ Heather E. Golden,² Gary M. Davis¹, M. Craig Barber,¹ Karen Riva-Murray,³ Barbara C. Scudder Eikenberry,⁴ Celeste A. Journey,⁵ Paul A. Conrads,⁵ and Paul M. Bradley.⁵

¹ US EPA, Office of Research and Development, National Exposure Research Laboratory, Athens, Georgia, USA
 ² US EPA, Office of Research and Development, National Exposure Research Laboratory, Cincinnati, Ohio, USA
 ³ US Geological Survey, Troy, New York, USA
 ⁴ US Geological Survey, Middleton, Wisconsin, USA
 ⁵ US Geological Survey, South Carolina Water Science Center, Columbia, South Carolina, USA
 Wetlands in a Complex World
 Ninth INTECOL International Wetlands Conference
 June 3 - 8, 2012 Orlando, Florida

Presentation Outline

Research Background and Motivation

Research Questions and Research Approach

Modeling Framework

Model Results

Future Research

US EPA, Office of Research and Development National Exposure Research Laboratory, Ecosystems Research Division, Athens, Georgia

Research Background

□ In the USA as of 2010

 Hg fish advisories 50 states 1 US territory 3 tribes
 81% of all fish advisories in US surface waters are at least partially due to mercury

2,100,000 km of rivers

□ 3,710 Hg Advisories

http://water.epa.gov/scitech/swguidance/fishshellfish/fishadvisories/technical_factsheet_2010.cfm

US EPA, Office of Research and Development National Exposure Research Laboratory, Ecosystems Research Division, Athens, Georgia

Research Motivation

US surface waters are impacted by Hg

 \Box > 2,000,000 km of rivers have Hg fish consumption advisories

Atmospheric deposition is the primary source of Hg to many ecosystems

Streams and **rivers** are intimately linked with their watersheds

Need to understand factors governing Hg transport, transformation, and bioaccumulation

Research Questions

What processes and factors govern Hg exposure concentrations in streams and rivers?

How do we model the link of atmospheric Hg deposition to fish tissue Hg to increase our understanding and ability to predict wildlife/human exposure risk ?

How can we use focused, site-based (field) research studies to understand Hg exposure at larger scales (regional, national)?

Research Approach

Use mechanistic, differential mass balance models to simulate the fate and transport of mercury
 Land, subsurface, surface water, sediments, fish

Use linked multi-media framework to simulate Hg exposure concentrations up to larger scale systems

Use focused reach study to calibrate watershed modeling of Hg

Use individual models to evaluate governing processes and use linked models as a systems level approach

Mercury Cycle: Air, Land, Water, Biota

Research Approach: Mechanistic Models Why use Mechanistic Models?
Mechanistic Model: Understanding the behavior of a system's components and how they interact

For Understanding

- How well model represents observed data
- How well do we understand governing processes
- Both model success and failure provide insight

For Predictions

- Future exposure concentrations
- Scenario evaluation
 - Compare management strategies
- Model scaling
- Modeling different locations and sites

US EPA, Office of Research and Development National Exposure Research Laboratory, Ecosystems Research Division, Athens, Georgia

Multi-Media Modeling Framework

Research Approach: Mechanistic Models WATERSHED and GROUND WATER

VELMA: Visualizing Ecosystems for Land Management Assessment

Simulates

- Hydrology (Runoff, groundwater for 4 soil layers)
- Carbon: Dissolved Organic and Soil Organic
- Nitrogen: Ammonium, Nitrate, Dissolved Organic
- Mercury: MeHg, Hg²⁺
- Processes: methylation, demethylation, reduction/evasion

Research Approach: Mechanistic Models SURFACE WATER and SEDIMENTS

WASP: Water quality Analysis Simulation Program

- Simulates
 - Media: Water Column and Sediments
 - Stream Flow Hydrology
 - Fines, Sands, Particulate Organic Matter
 - Mercury: MeHg, Hg(II), Hg(0)
 - Processes: methylation, demethylation, oxidation, reduction, sorption, settling, resuspension

Research Approach: Mechanistic Models
FISH COMMUNITY and BIOACCUMULATION

BASS: Bioaccumulation and Aquatic Simulations Simulator

- Simulates
 - Population dynamics of age-structured fish communities
 - Hg in fish tissue for each age cohort of fish species present

Study Site: McTier Creek Watershed, SC, US

Sand Hills region of Upper Coastal Plain, SC

79 km² drainage area

Mixed land cover: 49% forest, 21% grassland and herbaceous, 16% agriculture, 8% wetland, 5% developed, 1% open water

Shallow groundwater system Low – normal flow: toward stream channel o High flow: same with increased area of groundwatersurface water exchange

SALUDA

watershed

GΔ

Edisto

AIKEN

2 MILES

2 KILOMETERS

US EPA, Office of Research and Development National Exposure Research Laboratory, Ecosystems Research Division, Alteris Central

Study Site: McTier Creek Watershed, SC, US

Sand Hills region of Upper Coastal Plain, SC

79 km² drainage area

Mixed land cover: 49% forest,
 21% grassland and herbaceous,
 16% agriculture, 8% wetland, 5%
 developed, 1% open water

Shallow groundwater system

 Low – normal flow: toward stream channel
 High flow: same with increased area of groundwater-surface water exchange

US EPA, Office of Research and Development National Exposure Research Laboratory, Ecosystems Research Division, Alter Ser Pate

 Anational cand Cover Pataset (Homer and others, 2 Albers projection, NAD 83 datum, Central Meridian - 95 00 00

Focused Reach Study:

Watershed spatially explicit 3 dimensions 4 soil layers 30m x 30 m area

Processes in Each Soil Cell Methylation / Demethylation rates = function of T and soil moisture

Mercury flows with water Competing processes of Dissolved Organic Carbon complexation sorption to soil matrix

Water can move in any direction

Precipitation

Focused Reach Study

McTier Creek Watershed Modeling: VELMA

New Holland, 79.4 km²

US EPA, Office of Research and Development National Exposure Research Laboratory, Ecosystems Research Division, Athens, Georgia

Linking VELMA Output to BASS McTier Creek Fish Community

Linking VELMA Output to BASS McTier Creek Fish Community

Linking VELMA Output to BASS

Future Research Questions

- Linking VELMA and LOADEST MeHg w/BASS predicted relatively well
- Fish Tissue Hg
 - Yellowfin Shiner: Overpredicted
 - Tesselated Darter: Well predicted
 - Large Mouth Bass: n = 3, falls within range
 - Blackbanded Darter:
 - Wide range of observed
 - Simulations on low end of observed

Future Research Questions

- The phase of VELMA simulated MeHg concentrations are out of phase with the observed and LOADEST
- VELMA having fish Hg out of phase and VELMA slightly higher than LOADEST
- Are flow paths not adequately represented in VELMA?
- Importance of wetlands?
 - How can we represent wetlands in VELMA?
 - Should a water quality model be used?
- Link VELMA to WASP
 - Does this improve predictions of THg and MeHg?
 - Is it worth additional modeling cost/effort?
- Should wetlands be simulated in WASP rather than VELMA?
- Are wetlands a watershed component or a surface water
 Are wetlands a watershed component or a surface water

Future Research

Can we then use McTier Creek to simulate THg, MeHg, and fish tissue Hg on a regional scale?

Continuing linkage of VELMA and BASS? Do we need to incorporate WASP to link HUC12s together and capture instream processes?

VELMA + BASS vs VELMA + WASP (?) + BASS

What is the best modeling framework design to simulate regional basins?

Mechanistic model comparison/evaluation. Is VELMA+WASP+BASS >> VELMA + BASS?